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A TEST OF THE TWO-SAMPLE PROBLEM WITH NUISANCE LOCATION AND

SCALE PARAMMI'ERS, AND AN ESTIMATE OF THE SCALE PARAMETER

by

Saul Blumenthal

I. Introduction

We consider here two related problems. The first can be viewed as

an extension of the classic two-sample problem which asks whether two

samples have the same underlying distribution. Thus, given two indepen-

dent samples Xl''"* Xn ; Yl,""., Yn where the Xi are mutually inde-

pendent with common c.d.f F(x), and the Yi are mutually independent with

common c.d.f G(x), the classic two-sample hypothesis is that F(x) equals

G(x) and the alternative is that F(x) and G(x) are not identically

equal. If the two-sample hypothesis is true and (AXi + B) is substituted

for Xi (i = 1,...n) (A > 0, B real) before the test is made, any consis-

tent test for the classic problem would reject the hypothesis with a high

probability. The numbers A and B represent nuisance scale and loca-

tion parameters and do not affect the form of the distribution of (AX i + B).

Under some circumstances, the relevant question might be whether F(x) and

G(x) are of the same form even though they differ through the presence of

the above mentioned scale and location parameters. Formally, the hypothesis

would be that F(x) = G(Ax + B) for some unspecified pair A, B (A > 0, B

real). The alternative is that the above equality does not hold. We pro-

pose a family of test statistics, all members of which lead to a consis-

tent test of the last named hypothesis under some mild restrictions on the

form of F(x) and G(x).



Having described the general hypothesis which we are testing, we

shall suggest some specific instances where it would be useful. The

range of application will be seen to be essentially the same as that of

the classic two-sample test. If the experimenter wants to test whether

two distributions are identical and he knows that the measurements on the

two populations have been made with instruments whose zero and scale cali-

brations are different, then he can use the proposed test to eliminate the

effect of these extraneous factors. If he knows the numerical values of

thp zPro and scale factors and can adJust the data to a common zero and

scale, then the usual tests would be more efficient.

The experimenter might consider two populations the same if they

both have distributions of the same form even though they differed in a

scale and location parameter. Here again the proposed. test is applicable.

For example, two machines might be considered interchangeable if some

measurable characteristic of their output has the same distribution for

each machine. It might not be feasible however at the time of making the

test to adjust the machines so that the scale and location parameters of

the output distributions are the same. Alternatively, through some

accident, the machines might have been adjusted differently at the time

the data were collected, and re-adjusted subsequently so that at the time

the statistician gets the data there is no way of knowing what the rela-

tive scale and location settings were at the time of data collection.

Using the proposed test, such data would not have to be discarded.

A further use of the test would be to detect a "linear drift".

Suppose it is believed that observations at time zero have a distribution

F(x) (unspecified) and that observations at some fixed later time can be

2



considered to be of the form AY + B where again Y has the distribution

F(x). Then the proposed test will reject the hypothesis if either the

distribution of Y is not F(x) or if the linear model AY + B is not

correct.

The second problem is that of estimating the scale parameter A,

assuming that F(x) = G(Ax + B) (A > 0, B real). Again a family of esti-

mates is proposed, each member of which provides a consistent estimate of

A under the same mild restrictions on F(x) that are made for the test

of hypothesis.

This estimation problem could arise in several ways. After accepting

H0, the experimenter might want an idea of the size of the scale parameter

A. Alternatively, assuming H to be true on the basis of theoreticalo

considerations, "A" might represent some physical characteristic which

the experimenter wants to measure. If he is unwilling to make specific

assumptions about the type of distribution involved, the proposed esti-

mates with their fairly weak assumptions can be used. If, alternatively,

the experimenter does know more about the distrihl,1ions, bi% ninds compu-

ting "best" estimates is too difficult, the proposed estimates might

again be useful.

A common problem where such an estimate is needed is in the case

where a time factor introduces a linear drift into the observations. If

all the X's are assumed to have been measured at time t and the Y's0

at another time tl, then the assumed model would apply.

In Section 2, we describe the proposed statistics in detail and

discuss their properties. Section 3 consists of an example of the
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computations involved. The following Section is concerned chiefly with

establishing the consistency of the proposed estimates and tests. The

important question of the distributions or even the asymptotic distri-

butions of the proposed statistics is discussed only briefly in Section

5. Section 6 raises some additional questions.



2. The Test and The Estimator

Let XI"..., Xn ; Y1,.." Yn be two independent sets of mutually

independent random variables. Let F(x) be the common c.d.f of the

XI (i = l,...,n) and G(x) be the common c.d.f of the Yi (i = 1,...,n).

We shall list in Section 4 the necessary regularity conditions on F(x)

and G(x). Let XI_< XI < ... < X' be the ordered values of XI,.. .,X
1J-2. - nn

and Y1-< Y' < . -< Y'n be the ordered values of YIi'..' Yn. Define

Ui as (XI+1 - XI) and V, as (Yi+l - Y1 ) (i = 1,..., n-l). Let a,

8, p, u, v be arbitrarily chosen numbers satisfying the following res-

trictions:

1

(2.1) O<c, p<l;O<B<1 ; 0< u <v V <O

We then define the following statistics:

i=[n-n1/2 + 5

(sin yp/nnp) (Ui/Vi)p O<p< Ii=[ 1n/2 + 5 1

(2 n i=[n-nl/2 + 5

(1/n log n) (Ui/Vi) P=l

i=[nl/2 + a

[nv-i]
(sin gp/nvp(v-u)) y (Ui/Vi)p O<p<l

i=[nu+l]

(2.3) Sn(P,U,V) =[nv-]

(1/n (v-u)log n) E (ui/v±) P = I

i=[nu+l]

where [J is the greatest integer less than or equal to,/.
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Similarly, define S'(p,5) and S'(p,uv) by replacing (uiivi) bynn

(Vi/Ui) in the corresponding definitions for Sn(Pb) and Sn(P,u,v).

We desire to test the hypothesis

H : F(x.) = G(Ax'+ B)(2.li) 0

H1 : F(x) G(Ax + B).

The first proposed family of tests is to reject H if the product0

Sn(p,8)S'(p,8) is "too large". The second proposed family of tests is

to reject H if the product S(pu,v)SA(p,u,v) is "too large". When
0nn

F(x) and G(x) satisfy conditions (4.2) to (4.4), we show in Section 4

that Sn(P,5) S1(p,0) converges stochastically to unity when H is
n n 0

true and to a quantity greater than unity otherwise. This implies that

the proposed tests are consistent against alternatives F(x), G(x) satis-

fying these conditions. We show also that the tests are consistent

against distributions which satisfy only condition (4.2). Derivations

from condition (4.2) can lead to situations in which H is not true0

and the probability of rejecting H will not tend to unity as n0

increases. This can happen when one of the distributions has a flat

section. An example is given by (4.30). If H is true and conditions0

(4.2) to (4.4) are violated, the test will tend to accept H in someo

cases and reject H in others.

Under the weaker assumptions (4.1) the proposed tests based on

Sn(p,u,v) St(p,u,v) can be shown to be consistent by the same type of

argument as above. Again) violation of this condition will lead to the

situation described above. Although the Sn(Pu,v) family of tests

requires weaker assumptions regarding the form of F(x) than does the
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Sn (p,B) family to guarantee the same operating properties, the

Sn (pu,v) tests require that a fixed percentage of the observations must

be ignored, whereas the percentage ignored by the S n(p,8) family goes

to zero with n. Both families of tests are invariant under separate

linear transformation on the X's and Y's. This is a reasonable require-

ment for any test of H .0

The choice of p would presumably be dictated by power considera-

tions. Power depends on distributions, and we know almost nothing about

these.

Assuming that F(x) = G(Ax + B), we propose to estimate the scale

factor A by S•(p,') if assumptions (4.2) to (4.4) are satisfied, or

by Sn(p,u,v) if condition (4.1) is satisfied. The consistency of

these estimates follows from Theorem 2, Lemma 2, and Theorem 3. Again

choice of p depends on the unknown distributions of the statistics.
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3. Computational Example

To illustrate the type of computations involvedwe shall compute the

scale parameter estimate S'(p, .1, .9), with n = 10 for convenience.

The X's represent ten observations which were taken from a uniform dis-

tribution on the unit interval by means of a table of random numbers.

The Y's represent ten observations from a uniform distribution on the

interval from zero to five. Thus the factor A to be estimated is five.

The table below shows the steps needed to go from the Xi and Yi to the

Xv and Y' (ordered values) to the U and V (differences) to obtain

finally the estimator S'(p,u,v). Two values of p are used, p = 1/2n

and p = 1 to illustrate the two types of estimators described.

ii ii i i vi/Ui iLuI/

1 .72536 .05275 .13538 4.44515 0.06115 0.42775 3.160 1.778

2 .30061 .18813 .04203 0.72285 O.48890 0.2339/ 5.566 2.3r9

3 .31694 .23016 .05608 2.78165 0.72285 o.62230 11.097 3.331

4 .18813 .28624 .01437 4.51455 2.34515 1.436-0 99.95 9.998

5 .05275 .3OO61 .01633 0.06115 2.78165 0.57620 35.285 5.940

6 .79607 .31694 .03206 4.77130 3.35785 1.08730 33.914 5.824

7 .34900 .34900 .03940 0.48890 4.441i] •, O.06940 1.761 1.327

8 .23016 .38840 .33746 4.82835 4.51455 0.25675 o.761 0.872

9 .38840 .72586 .07021 1.3451:, 4.77130 0.05705 0.813 0.902

10 .28624 .79607 - 3.35785 4.82835

From (2.3), we see that to compute S'O(l, .1, .9), we must sum

(V2/U2 ) through (V8U 8 ), and divide the total by (.8)(10) log 10, which

is 18.421. The total is 188.350 and thus our estimate S{,(1, .1, .9)

is 10.225. To obtain S'0(l/2, .1, .9), we sum (V/U 2 )l/2 through
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)l/2 and divide by (.8)(10)(-/2) (since sin v/2 = 1) which is

12.566. The total here is 29.651 and thus our estimate S O(1/2, .1) .9)

is 2.360. It is seen that one estimate is more than double the true

value while the other is less than half. Thus, neither is particularly

good. Since the sample size is quite small, we would not expect the

asymptotic properties of the estimator to have any bearing and this ex-

ample can be considered as an illustration of the danger of using a small

sample when the small sample properties of the statistic are not known.
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4. Convergence of the Statistics
Let X1 ... ,Xn ; Y1 ,...,Yn and X ... X; and Y., <Y

be as described in Section 2. We shall list below regularity conditions

on the distributions F(x) and G(x). These conditions will sometimes

overlap, and not all of them need be satisfied for the stochastic con-

vergence of a particular family of statistics. We state the conditions

in terms of F(x) for convenience.

(4.1) For a given pair of numbers, uo, v0 (O< u0 <v 0  ) F'l(u0 ) and

F1 Cvo) are uniquely determined, and F(x) has on (F- (uo,

F (v 0)] a derivative f(x) which has only a finite number of

discontinuities, is bounded above, and is bounded away from zero.

(4.2) F(x) has a derivative f(x) which is bounded for all x, and

has only a finite number of discontinuities. Further, there ex-

ists a positive value D' such that for any value D in the

open interval (0, D'), the set of points (x : f(x) > D) is

an interval.

(4.3) If f[F- (r)] is not bounded away from zero as r approaches

unity then either there is a value t(O<t < 1) such that the

quantity d f[F'l(r)]/dr is negative and non-increasing for

r > t, or the quantity d f[F l(r)]/dr approaches a finite ne-

gative limit as r approaches unity.

(4.4) If f(F' (r)] is bounded away from zero as r approaches zero

then either there is a value t'(o0t'< l) such that the quantity

d f(F' 1 (r)]/dr is positive and non-decreasing for r < t', or
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the quantity d f[F (r)/dr approaches a finite positive limit

as r approaches zero.

Note that (4.2) implies (4.1). Also, the second part of (4.2) is

satisfied by every unimodal f(x). Conditions (4.3) and (4.4) can be

verified by using the fact that d f[F'l(r)]/dr = d lg f(F'l(r)1/dF'l(r).

Thus the condition (4.3) says that if f(x) goes to zero as x increases,

then there exists a finite y such that d log f(x)/dx is non-increasing

for x > y. The conditions (4.3), (4.4) are satisfied by all infinite

Polya frequency functions. The exponential, normal and Weibull distri-

butions are well-known examples.

Now we shall consider the question of stochastic convergence. Let

h(t) be a bounded non-negative function of t defined for O< t < 1.

For p in the interval 0 _<p!l, define Hn(p) as follows:

n-l
Hn(p) = (1/n) l h(i/n)(Ui/Vi)P , O(p<l

(4.5)
n-l

Hn(p) = (1/n log n) • h(i/n)(Ui/Vi) p 1.

Then we have

Theorem 1. If F(x) G(x) = x, (0< x<1), then as n increases,

Hn(p) converges stochastically to

n-l
(vp/n sin op) E h(i/n) 0< p< 1

i =1

(4.6) n-l(1/n) h(i/n) p=1.
i l=
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Proof:

Let W., ... ,Wn. and Z, ... ,Zn. be two independent sets of
n-i

mutually independent random variables with cdf eXx. Let Rn W,
n-i i=1

T - zn. Then it is well known that (WW/Rn,...,wn 1 /Rn) and
i=l n

(UI, ... ,Unl) have the same joint density. Similarly for

(ZI/Tn,...,Zn.I/Rn) and (V1,...,Vn-l). Also Rn is independent of

(WI/Rn,...,Wn.I/Rn) and Tn is independent of (Zi/Tn...iZn.I/Tn).

Thus we need only consider the convergence of

n-1(4.7) (1/n) i h(i/n) (T W/R zi) 0<p<i.

iln t/ n iP0<p<1

Using the strong law of large numbers, and making somc straight-

forward computations, we find that (Tn/Rn)p converges to unity w.p.l

for all p, O<p< 1. Also, for O<p< <4 , we find that

n-l

(4.8) (1/n) n h(i/n) (wi/zi)p
i=1

1converges to (4.6) w.p.l. For - < p < 1, the results in Gnedenko and

Kolmogorof (2] on the relative stability of a sum of positive random

variables with finite expectations show that (4.8) converges stochasti-

cally to (4.6).

For the case p = 1, we must consider

n-i
(4.9) (1/n log n) • h(i/n) (Wi/Zi)

i =1

Again the convergence of (4.9) stochastically to (4.6) follows from

results in [21 on asymptotic stability of sums of positive random

variables. The boundedness of h(t) is important in all of the above

convergence computations. This proves Theorem 1.
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Corolir 1. If F(x) = G(x) - x (0C<x< 1), and f1 h(t)dt exists

(in the Riemann sense), as n increases, Hn(p) converges stochastically

to

(np/sin %p) f h(t)dt 0 < p < 1
0

(4.,. o)

f h(t)dt p 1=

Proof:

if f h(t)dt exists, then as n increases, (4.6) approaches (4.10).

This proves the corollary.

Nov suppose condition (4.1) is satisfied and let Sn(P,uv) be de-

fined by (2.3) with 0 < uo < u < v < v0 < 1, where u0, v0 are given

in (4.1) Then we have

Theorem 2. As n increases, Sn(P,u,v) converges stochastically tov
(4.11) (1/(v-u) )f (g [G' (t)3/f[F1l(t)])p dt

Proof:
If X1 and X1 are both in [F 1(u), F 1(v)], and Y' and Y'

are both in [Gl(u), G'l(v)], we can write

F(x' F - = f(O )(X+ 1 - xI), (xI < 0 < x, )

(4.12)

G(Y' )-G(Y) = (9')(Y' - V)(Y' < 0' < Y' )
J+1 3 3 3+1 3 3 3 - 3+3.
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Define X as IF(X5 ) - (J/n)I and a• as IG(Y 5 )- (J/n)I . By the

Glivenko-Cantelli theorem, ve know that for any positive B, max nl/2-5 %
i

converges stochastically to zero as n increases. Define 8 as

1x 1 F'1nI 
1

jX' - F'l(J/n)l. If X• and F' (j/n) are both in the interval

(F' 1 (u), F'1(v)], then since f(x) _: A > 0 on this interval (by (4.1)),

we have 5J.< (X /A). Then if X3 , X+1 , F(j/n) and F' ((j+l/n) are

all in the interval [F-l(u), F l(v)], we have that leP- F'(j/n)I < +

5j+1 + 1/nA, and we can write

(4.13) F(X - F(X) = f[F-1 (J/n)] (X 1 - V + 1CX' - X')
J+ i lJj+l j

where yj = f(ej) - f[F-(Oj/n)]. But because of the uniform continuity of
f(x) in 5Fl (u), F' (v)], the above bound for l j F1 (j/n)I and the

Glivenko-Cantelli theorem, it is easily seen that max 1ivl converges
nu< i < nv

stochastically to zero as n increases. Similarly we can show that

(4.14) G(Yý+1 ) - G(Y3 ) = g[-\Jn] Y' ) + yr(yt - YO)

where max 1Ij1 converges stochastically to zero as n increases.
nu< i< nv

Denote F(X ) - F(X) by WJ and G(Y ) -G(Y)

(j l,...,n-1) by Z . Notice that (WI,...,Wn- 1 ) and (ZI,...,Zn.,)

are distributed as two independent sets of sample successive differences

from the uniform distribution on the unit interval. Using (4.13) and

(4.14) we have

(4.15) E (g[G'l(i/n)]/f[F-l(i/n)])P (Wi/Zi)P = (u(U/vi)P +
nu < i < nv nu< i< nv

+ Z (Ui/vi)p [(f(ei) g[Gl(i/h)]/g(eý)f[F'l(i/nN)P -1)

nu< i < nv
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Using the result of Corollary 1, we have that the left side of (4.15)

when properly normalized converges stochastically to (4.11). Let the

appropriately normalized second term on the right side of (4.15) be re-

presented by Sn(p,u,v). As n increases, the probability approaches

unity that ISn(PUv)I will be no greater than

Sn(p,u,v) ( max lyilp Dp + max lylPIBP)/APCp]
nu<i < nv nu<i< nv

where 0 <A <f(x) W B < c for Fl(u) : x< F'l(v)j and 0 < C < g(x)5D <w,

for G1l(u) < x < G1 l(v). Thus we have that 19n(P,U,V)I/Sn(p,u,v) con-

verges stochastically to zero as n increases. But Sn(P,u,v) + Sn(PUV)

converges stochastically to (4.11) as n increases. This proves Theorem

2.

It is clear that the same proof will show that under condition (4.1),

S1 (p,u,v) (defined in Section 2) converges stochastically to

(4.15) (1/(v-u)) fv (f[F-l(t)S/g[G'l(t)])p dt.

Thus, under condition (4.1), we obtain that as n increases the

statistic SI(p,u,v) Sn(P,u,v) converges stochastically to
V v

(4.16) (1/n(v-u)) 2 (fu(f[F'l(t)]/g[G_'(t)1)Pdt)(fu (g[G'l(t)]/f[F'l(t)])Pdt).

Now, assume that conditions (4.2) to (4.4) are satisfied. Let

S n (p,) be given by (2.2). Then we have

Theorem 3. If F(x) = G(Ax + B), then as n increases, Sn(P,B) con-

verges stochastically to (l/A)p

15



Proof:

We assume that either or both of the quantities li.1  f(x),
xF'' (0)

lira f(x) is zero. Otherwise, Theorem 2 applies. For arbitrarily
xtjF ( 1)
chosen u, v, 0 <u < v <l, we have

(4.19) Sn(p,b) = (v-u) Sn(p,u,v) + b(n,p) (E(Ui/Vi)p + E (u1/vd)P
\n/2+11<i< nu nv <_.1< n-n1/2+5/

w 0er e ns i n n y/ n n y 0 < p < 1

(4.20) b(n,p) 1/ lo np a11/n log n p-=i•

By Theorem 2, (v-u) Sn(P,u,v) converges stochastically to

( 1 f (g[G'l(t)]/f[F-l(t)])p dt - (v-u)(l/A)p

We shall now investigate r (U/Vi)P , the treatment of

nv< i< n:r.n/2+8/2+5 (ui/vi)P

nI/ <i< nv being entirely similar.

Since F(x) = G(Ax + B), we see that (YI''."yn1-) has the same
distribution as (All + B,...,"A% + B) where ! has the distribution

F(x). Letting the ordered Yi be 1< ... ,n and the differences be

VI ?, Yi (i-i,..., n-i), we have that • (Ui/Vi)P has the same

distribution as • (Ui/AVi)P . Thus we want to study the convergence of

( ui/v, )pnv< i n-/2+ " Using condition (4.3) and the relation (4.12), we ob-
nv< i<n

tain that w (Ui/vi?) can be bounded above by

nv< i< n-nI/2+8
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C•.22 •v< i• n• I/2÷•(f¢k•)/f(Xj+•))P((FCX1+)'CI3C(+)F•)3
(4.22) 1/2+

If we can find a bound (say B) for f(?j)tfCxj+l), then we would be

through, for (4.22) would then be bounded by

(4.23) Rpnv<q< [(F(Xi+I))/(F(ýj) - (F(?i)))I

By Corollary ., (4.23) when normalized to agree with Sn(PO) con-

verges stochastically to (l-v)Bp. Thus, by choosing v* (say) sufficiently

large, we will have that

P fb(n,p) (uilvi)1 1 2 +5_)
nv < i < n-n/2Be ý

approaches unity as n increases for each v such that v* < v < 1.

To bound f(Y )/f(X, l), we note that if > Xj+1 , then unity
i i- i l

serves as a bound. Thus we must find a bound (B') for this ratio when

<x li. We can then take B= 1 + B'. Letting t, F(TI) and

t = F(Xj+1 ) (momentarily supplressing i), we have tI < t 2 , and

(4.24) (f(ý,')/f(X,1+l)) = (f[F'l(t l) ]f[F'l(t2)D3)

By the mean value theorem, and the fact that f[F 1(1)] = 0, we have

f[F'l(tl)] = (l-tl)(-df[F-l(t)]/dt) t=1 tI 9< 1<

(4.25)

f[F1(t2 )] = (1-t 2 )(-df[V'l(t)J/dt)t__e2 t 2  < 1 1

Prom condition (4.3), we see that there is a value v such that if

tl, t 2  both exceed vl, then either (df[F'l(t)]/dt)t (J=1,2) is
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sufficiently near a limit L, in which case the ratio (4.24) is bounded

by 2(l-tl)/(l-t 2 ), or df[F'l(t)]/dt is a decreasing function of t for

t > t. In the latter case, by Lemma 1 below, we have (1-tl)/(l-t2 ) as

a bound for the ratio (4.24). Clearly, if v > v1*, then as n increases,

P (F(?I) > vl, F(X 1+ 1) > v, , nv < i < n)

approaches unity. Thus, we need only to find a bound for

[I-F(Ij) 1/[l-F(Xi+ )1.n',nv .i <n- n/2+8). Re~riting this' last ratio as

(n-i) 1/2"8 + nl/2-B (.
n n i

(n-i-l) nl/-5 + nl/2-8 qi+l) ..

using the Glivenko-Cantelli Theorem (see Theorem 2), and noting that
[(r- )/n1/2+5] is greater than unity, we have that

P (([I-F(Yi)]/[I-F(Xi+I)] < 2 , nv_< i < n-nl/2+6i

approaches unity as n increases.

Putting together all of the above pieces, and noting that we can

choose u,v so that (v-u) is arbitraril:y close to unity, we see that

P (ISnP,•b) - (l/A)p I < e)

approaches unity as n increases. This proves Theorem 3.

Lemma 1. Suppose f(x) is continuous and differentiable on the interval

(a,b), with f'(x) < 0 and decreasing. Let x1 < x 2 be in (a,b). By

the mean value theorem,
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(4.26) ±(xi) f(b) + (i' b) () X,< ei<b, i 1,2

Then 2> 6 •

Proof:

First note that

(4.27) f(xl) ±f(x 2 ) - (x2 - xl) (f'(e3 )) x _< 63 x2

and that e < 81 " If r 1 < 13 , then

f(x)-- f(b) + (b-xl)(-f'(eL)) < f(b) + (b-xl)(-f(e3 )) -

(4.28)

= f(b) + (b-x 2 )(-f'(93)) + (x2 - xl)(-f'(63))

Using (4.27) in (4.28), and noting (4.26) we have G3 > 92 which

is impossible. Writing f(xl) = f(k2) + (f(xI) -f(x 2 )), then using

(4.26) to represent f(x 2 ) and (4.27) to represent (f(x 1 ) - f(x 2 )) and

subtracting the result from the representation of f(xI) given by

(4.26), we obtain

(4.29) 0 = (x1 - b) f'(e1) - (x2 - b) f'(82) + (x2 - xl)f'(93)

= (x2 - b)(f'(el) - f'(e2 )) + (x2 - x9)(f'(e) - f'(e8.)).

Since 63 < e , - is positive, or 9< . This proves

Lemma 1.

In the same way that we proved Theorem 2, we can show that under

the same conditions, Sn(p,b) converges stochastically to AP. Putting

together these results, we have that s (p,5) Sn(p,b) converges stochas-

tically to unity as n increases, when F(x) = G(Ax + B), and conditions

(4.2) to (4.4) are valid.
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We shall now state a Lemma due to Weiss [3], which will be useful

below.

Lemma 2. If F(x) and G(x) are two distribution functions and u,

v (0 < u < v < i) are two given numbers, suppose F'(u), F' (v), G'l(u),

G&l(v) are all uniquely determined. Also suppose that F(x) has a

derivative f(x) between 7'l(u) and F1 l(v), and G(x) has a deriva-

tive g(x) between G'l(u) and G6(v). Then a sufficient condition

that f[FF'(r)] = kg[G-l(r)] for almost all r in [u,v] (where k is

a positive constant) is that there are two constants C, D (C > 0), such

that F(Cx + D) = G(x) for all x in the interval [G- 1 (u), G 1 (v)].

If in addition, f(x) > 0 between F-1 (u) and F- (v), the condition

is necessary as well as sufficient.

We omit the proof since it is contained in [3]. Note that Weiss

omitted the condition f(x) > 0 between F1 (u) and F'l v) and without

this condition the statement is incorrect. A simple counter-example is

given by the following pair of distributions:

G(x) = 0 x < 0

= 2x(l-x) 0 < x < 1/2

1-2x(1-x) 1/2 < x < 1

(4.30) 1 1 < x

F(x) ,0 x<0
4x(l-2x) 0 _< x < 1/4

=1/2 1/4 < x < 3/4

= 1-4 (l-x)(2x-l) 3/4 < x < 1

1 1l<x

Here (f[F-l(r)]/g[G'l(r)]) = 2 for all r in [0,11, except

r = 1/2, but clearly G(x) + F(Cx + D) for any pair C, D (C > 0).
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Now we shall return to the problem of examining Sn(p,5) Sn(p,8)

when conditions (4.2) to (4.4) hold but F(x) * G(Ax + B). We have

Theorem 4. If F(x) * G(Ax + B) (A > 0), and conditions (4.2) to (4.4)

obtain, then as n increases, for every e > 0 ,

(4.31) P (S1 (p,8) Sn(p,5) + e > [f (frF'l(t)]/g[G' 1 (t)])) dtl"

0

1i[fo (g[O'l (t)]/f[F-l(t)])P dt]]

0

approaches unity.

Proof:

Let Sn(pb) and Sn(p,b) be represented as in (4.19). Then

note that Sn(p,5) Sn(Pb) can be written as

(4.32) (v-u')2 ;3n(p,u,v) Sn(p,u,v) + B(n,p,u,v)

where u,v (0 < u < v(.) are arbitrary and B(n,p,u,v) is strictly

positive. By (4.17) we have that (v-u) 2 Sn(p,u,v) Sn(PUV) converges

stochastically to

(4.35) h(t) dtf (1/h(t)) dt

where

(4.34) h(t) = (f[F'l(t)]/g[G'l(t)])p.

But by the Lebesgue Monotone Convergence theorem, we know that by

making (v-u) close to unity, we can, for any positive c, make (4.33)

greater than
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(4.35) h h(t.) dt fo(1/h(t))dt -r.
1 1

This completes the proof of Theorem 4.

Assuming the conditions (4.2) to (4.4) we can now prove the consis-

tency of the test which rejects H when Sn(P,) Sn(P,) is "too

large." By Lemma 2, we have that when H is not true, h(t) (given by0

4.34) is not a constant on (0,1]. It can then be shown that

(4.36) foh(t)dt fo(1/h(t))dt

is greater than unity. Thus using Theorem 4, we have that

(4.37) P (Sn(p,") Sn(P,8) > 1)

approaches unity as n increases. This establishes consistency when

conditions (4.2) to (4.[1.) are satisfied. It is easily seen that condi-

tions (4.3) and (4.4) were not essential to the argument. Thus even if

only condition (4.2) holds, the test will be consistent. if condition

(4.2) is violated, we must allow distributions such as those given in

(4.30) and for such distributions it can not be shown that the probability

(4.37) approaches unity as n increases.
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5. Remarks About Large Sample Distributions.

We shall give a heuristic argument to indicate why for some values

of pi Sf(pu,v) and 8n(pu,v) might have a bivariate normal limiting

distribution, whereas for other values of p this distribution is not

possible. Similar statements can be made about Sn(p,b) and S (PA).n n

From the proof of Theorem 2, we see that Sn(p,u,v) and Sn(p,u,v) have

approximately the same joint distribution as

b(n,p) n (f[F'l(i/n)]/g[G'l(i/n)])p (Wi/Zi)p and
i-nv

b(n,p) Ev (g[Gl(i/n)'/fIF2j (i/n)I) P (Zi/Wi)p

i--nu

where (Wi,...,W nl) and (ZI,...Zn.1 ) have the same joint distribu-

tions as the corresponding quantities in Theorem 2, and b(n,p) is

given by (4.20).

From the proof of Theorem 1, we see that the quantities in (5.1)

have approximately the same joint distribution as

nv

b(n,p) ( (h(i/n))p (Ri/?i) p and
ionu

nv

b(n,p) Z=n (1/h(i/n),)p (/i)p

where

(5-,) h(i/n) = f[F-(i/n) /g[G 1 l(i/n) I
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and (2n'''" n) are independent random variables with c.d.f e'x

and (YS'.'" !n) are independent random variables with c.d.f e'Y.

Each of the quantities in (5.2) is a linear combination of indepen-

dent random variables, and when p < 1/2, the first two moments of these

variables are finite. Thus, the bivariate central limit theorem applies

and the expressions in (5.2) have a limiting bivariate normal distribu

tion. Thus, for p < 1/2, it is reasonable to suppose that S'(p,u,v)n

and Sn(P,u,v) have a limiting bivariate normal distribution. When

p = 1/2, all moments of (Ri/Si) up to the second exist, and each term

in (5.2) can be shown to have a limiting normal distribution. Similarly,

a bivariate limiting normal distribution for the terms in (5.2) can be

obtained from a generalization of the one-dimensional result.

When p > 1/2, not all moments of (Ri/?i)p of order less then

two exist. If one of the expressions in (5.2) had a limiting normal

distribution, then the expression

i=nu

where h(i/n) is taken to be identically unity would have a normal

limiting distribution. However, (5.4) is a sum of independent,

identically distributed random variables, and from CrameJrti, Theorem

23, we find that a necessary condition that such a sum have a limiting

normal distribution is the existance of all moments of order less than

two. Thus, for p> 1/2, it is reasonable to say that in general

Sn(p,u,v) and Sn(P,u,v) will not have a limiting bivariate normal

distribution. What sort of limiting distribution these quantities do
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have when p > 1/2, is completely open.

Thus from the viewpoint of being able to say something about

asymptotic power, there is some advantage to using the tests with

p <1/2 rather than those with p > 1/2.
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6. Further Problems.

Since each member of the family Sn(p,u,v) (for u,v fixed) is a

consistent estimator of (1/A), it follows that any linear combination

of a finite number of these estimators (with the weighting factors

totaling unity) will also be a consistent estimator of (1/A). Similarly,

one would guess that if H(p) is a probability distribution on [0,11 then

1

f (SA(puv)dH(p)

should also be a consistent estimator of (1/A). It might be worth

considering whether there is some H(p) which in some sense gives a

"better" estimator than any individual Sn(P,u,v). Similar remarks

apply to Sn(Pb). In this case, the limiting behavior of Sn(p,b)

as 5 -* 0 would also be of interest.

It is possible to modify the two-sample problem treated herein so

that it becomes a two population test of fit. Namely, suppose that

H(x) is a given distribution function. Then under H we have

F(x) = G(Ax + B) = H(Cx + D) where A, B, C, D are real but un-

specified constants (A > 0, C > 0). The question here is not whether

F(x) and G(x) are the same "type" of distribution but rather whether

they are both the same specific type. This modified problem can be

solved by using the statistic Zn proposed by Weiss [3]. Let Z (X)

be defined for fixed u, v (0 <u < v < 1) by
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. h 2 [H'l(j/n)](Xj+.1- Xj)2
(6.1) zn(X) nu < J< nv

E h[H'(J/n)](Xj~1 - Xj)) 2
nu<j< nvf

and let Z n(Y) be defined similarly. Then from the results of [(], it

is easily seen that under condition (4.1), both of the following tests

are consistent

1) Reject H° if Zn(X) Zn(Y) is "too large", or

2) Reject H if Zn(X) + Zn(Y) is "too large".

Which of these two tests is better depends on their limiting power,

which in turn depends on the unknown limiting distributions of the

proposed statistics.
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